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Abstract
Epileptic source detection relies mainly on visual expertise of scalp EEG signals, but it is recognised that epileptic discharges 
can escape to this expertise due to a deep localization of the brain sources that induce a very low, even negative, signal to 
noise ratio. In this methodological study, we aimed to investigate the feasibility of extracting deep mesial temporal sources 
that were invisible in scalp EEG signals using blind source separation (BSS) methods (infomax ICA, extended infomax 
ICA, and JADE) combined with a statistical measure (kurtosis). We estimated the effect of different methodological and 
physiological parameters that could alter or improve the extraction. Using nine well-defined mesial epileptic networks (1949 
spikes) obtained from seven patients and simultaneous EEG–SEEG recordings, the first independent component extracted 
from the scalp EEG signals was validated in mean from 46 to 80% according to the different parameters. The three BSS 
methods equally performed (no significant difference) and no influence of the number of scalp electrodes used was found. At 
the opposite, the number and amplitude of spikes included in the averaging before the extraction modified the performance. 
Anyway, despite their invisibility in scalp EEG signals, this study demonstrates that deep source extraction is feasible under 
certain conditions and with the use of common signal analysis toolboxes. This finding confirms the crucial need to continue 
the signal analysis of scalp EEG recordings which contains subcortical signals that escape to expert visual analysis but could 
be found by signal processing.

Keywords  Blind source separation · Deep brain sources · Epileptic discharges · Mesial temporal lobe epilepsy · 
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Abbreviations
BSS	� Blind source separation
EEG	� Electroencephalography
IC	� Independent component
ICA	� Independent component analysis
IIS	� Interictal intracerebral spike
ISS	� Interictal surface spike
MEG	� Magnetoencephalography

MTL	� Mesial temporal lobe
SEEG	� Stereoelectroencephalography
SNR	� Signal to noise ratio
TLE	� Temporal lobe epilepsy

Introduction

Few recent studies using simultaneous multi-scale electro-
encephalography (EEG) recordings demonstrated that deep 
brain sources contribute to scalp EEG recordings but are 
not spontaneously visible by visual expertise (Koessler et al. 
2015; Ramantani et al. 2016; Pyrzowski et al. 2021; Lee 
et al. 2021). These brain sources, despite their depth and 
their mixing activity with superficial sources, can generate 
electric field potentials that project on scalp electrodes with 
a low signal to noise ratio (SNR). Extracting these EEG 
potentials from the deep mesial temporal sources would 
be very crucial because they could be used as biomarkers 
of pathological (e.g., epilepsy or Alzheimer disease) or 
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cognitive (e.g., memory, language, and sleep in particular) 
processes. The lack of awareness of these biomarkers can 
induce misinterpretation, wrong medical treatment strategies 
or the use of invasive recordings in clinical context such as 
drug resistant epilepsy.

Using electric or magnetic source imaging, several 
authors were able to localize deep cortical and subcortical 
brain sources (Koessler et al. 2010; Krishnaswamy et al. 
2017; Seeber et al. 2019; Rikir et al. 2020). These studies 
demonstrated that deep source extraction is possible from 
scalp EEG using high spatial sampling and source locali-
zation methods. These methods, thanks to a regularization 
(e.g., Tikhonov, L-curve, General-Cross Validation meth-
ods,…), can estimate and extract the deep sources within 
noisy data (Grech et al. 2008).

Applied to EEG, blind source separation (BSS) approach 
is an interesting method to suppress environmental or physi-
ological EEG artefacts but also to identify and separate brain 
sources from EEG recordings (Jung et al. 2001; Jutten and 
Karhunen 2004; Congedo et al. 2008). This automatic and 
unsupervised (i.e., without visual expertise) method could 
be used to extract deep brain sources from scalp EEG sig-
nals. In 2019, Pizzo and colleagues used BSS, and especially 
an independent component analysis (ICA) method, to disen-
tangle the activity from focal deep and large superficial brain 
sources from MEG signals and using stereoelectroencepha-
lographic (SEEG) recordings as reference method. They 
noticed that large band-pass filtering (2–60 Hz) and high 
number of events to average result are required to increase 
visibility of independent components (ICs). Hippocampal 
and amygdala activations could be found in 6 out of 14 
patients and from some patients (4 out of 14) ICA revealed 
evidence of a thalamic signal. This promising result relies 
on an advanced technology (i.e., MEG) and on the use of a 
high number of sensors (248 magnetometers). Because MEG 
technology cannot be commonly used in a high number of 
clinical or research centres, BSS approach for deep sources 
detection need to be investigated with scalp EEG that is the 
most common, portable and easy to use electrophysiological 
technique. This investigation should be particularly impor-
tant and informative especially in a scalp EEG context with 
low spatial resolution (10/20 system; Seeck et al. 2017) and 
a resistive volume conduction (especially the skull; Akhtari 
et al. 2002) context that reduce the SNR (at the difference 
to MEG where magnetic fields flow without attenuation in 
the head tissues).

In this paper, the first aim was to evaluate the efficiency of 
different BSS methods, combined with a statistical measure 
(kurtosis), to extract deep brain sources from scalp EEG 
recordings using a well-defined simultaneous EEG–SEEG 
dataset of mesial deep temporal sources (Koessler et al. 
2015). The second aims were to investigate the influence of 
methodological and physiological parameters that could alter 

or improve the extraction. For methodological parameters, 
we evaluated the influence of the IC ranks and the number of 
scalp EEG electrodes. For the physiological parameters, we 
evaluated the influence of the amplitude of the brain sources 
and the number of averaged interictal events. At the end, 
we identified the causes of non-detection and proposed an 
improvement of the method using an expert control.

Materials and Methods

Patients and Dataset

Patients

For this study, we used nine simultaneous EEG–SEEG data-
sets corresponding to mesial networks from a previous inves-
tigation (Koessler et al. 2015) involving seven patients (three 
females, mean age of 38 years) with temporal lobe epilepsy 
(TLE). These patients had (i) an epileptogenic zone confined 
to the temporal lobe and (ii) at least one interictal intrac-
erebral spike (IIS) source confined to the mesial temporal 
lobe (MTL), as defined by SEEG recordings. All included 
patients agreed to participate in this study, approved by the 
Ethical Committee of our institution (CHRU, Nancy), and 
the database has been declared to the CNIL.

Simultaneous EEG–SEEG Recordings

Simultaneous SEEG and EEG recordings were performed 
using a 128-channel system with 512 Hz sample rate and 
scalp FPz electrode as reference. For all patients, the fol-
lowing brain structures were sampled with multi-contact 
SEEG electrodes: amygdala; anterior and posterior hip-
pocampus; entorhinal cortex; collateral fissure; parahip-
pocampal gyrus; internal and external temporal pole; supe-
rior, middle, and inferior temporal gyri; temporo-occipital 
junction; fusiform gyrus; insula. Further SEEG electrodes 
were occasionally placed according to the spatial distri-
bution of interictal spikes and the respective electroclini-
cal hypothesis. For scalp EEG recordings, two main scalp 
regions were sampled: the fronto-centro-parietal region and 
the lateral and basal temporal regions ipsi- and contralateral 
to the presumed epileptogenic zone. Sterile scalp electrodes 
(from n = 8–25; Table 2) were glued on the patient’s head 
according to a specific sterile procedure and considering the 
position of the multi-contact SEEG electrodes. Two to three 
hours of EEG–SEEG recordings during calm wakefulness 
are selected for interictal spike analysis, avoiding ictal events 
or preictal changes.
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Dataset Pre‑processing

All data analyses were performed using MATLAB soft-
ware (MATLAB 7.0, The MathWorks, Inc.) and, for BSS, 
the toolbox EEGLAB (Delorme and Makeig 2004). Data 
pre-processing included three consecutive steps: IIS selec-
tion, IIS network classification and averaged ISS extraction. 
These steps are described below.

IIS Selection

First, SEEG recordings were visually analysed using a bipo-
lar montage. From a previous study (Koessler et al. 2015), 
mesial IIS network was selected by the reproducible occur-
rence of IIS within the MTL comprising the amygdala, 
hippocampus, entorhinal cortex, parahippocampal gyrus 
and collateral sulcus. Within this network, the source cor-
responding to the earliest IIS with the highest amplitude was 
considered as the principal source. These IIS were manually 
marked with a trigger (t0) at the peak of the initial compo-
nent, then segments of 1 s centred on the local extreme t0 
were automatically extracted and the corresponding ampli-
tude and latency computed.

Second, condensed cartographies of IIS amplitude and 
latency were computed to (i) ascertain that the selected 
IIS was indeed the earliest event with the highest ampli-
tude within the network, and to (ii) verify that all individual 
spikes presented an identical intracerebral distribution and 
therefore belonged to a mesial network (i.e., no co-occur-
rence of IIS in other parts of the temporal lobe).

Lastly, to check that non-mesial SEEG contacts were not 
activated at t0, a quantitative validation was performed. Each 
IIS was compared to background activity, in every SEEG 
contact, by a statistical test of outlier rejection under the 
null hypothesis that the amplitude of the peak did not signifi-
cantly differ from the amplitude of the background activity 

as measured in the intervals [− 500, − 250] and [250, 500] 
ms around t0.

Averaged ISS Extraction

Scalp EEG segments were extracted using the same 1 s 
epoch centred on t0 as SEEG segments. Segments with 
scalp EEG amplitude > 150 µV that represented < 10% of 
all segments were rejected and considered as artifacts. The 
remaining segments were band-pass filtered (1.5–30 Hz) and 
averaged.

Blind Source Separation and Independent 
Components Validation

From a signal processing point of view, averaged EEG sig-
nals could be considered as a set of mixed signals, originated 
from sources (or components) representing brain activities, 
artefacts, and measurement noise. In this methodological 
study, we were interested in the automatic extraction of a 
particular component, supposed to be the contribution of the 
mesial temporal source. To do that, we had to, first, separate 
without specific information all the components of this set 
(that is BSS) and second, select and validate the relevant 
component. This could be performed in five consecutive 
steps: (1) data whitening, (2) BSS, (3) ICs selection, (4) ICs 
labelling and (5) ICs validation (Fig. 1).

EEG Datasets

As mentioned previously, we evaluated the influence, on the 
BSS results, of the number of EEG segments used for aver-
aging and of the contribution of the deep source. Thus, for 
BSS on a specific IIS network, we made several trials with a 
10-segments step of EEG signals for the average calculation. 
Furthermore, we considered the contribution of the deep 
sources using the amplitudes at t0 in the triggering SEEG 

Fig. 1   Overview of blind source separation and independent com-
ponents validation. Selected electrodes correspond to the scalp elec-
trodes that were the most impacted by the ICi (i = 1–3). Finally, the 

time courses of the ICs were compared with the triggering SEEG sig-
nals. ISS interictal surface spike, ICs independent components, BSS 
blind source separation
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signal. Therefore, to see if a few high amplitude triggering 
SEEG signals were sufficient to extract the mesial sources 
despite their depth, we prepared two EEG datasets for each 
network: one with IIS sorted by decreased amplitude at t0 in 
the triggering SEEG signal and the other unsorted.

Data Whitening and Decorrelation

Due to an insufficient spatial diversity of the EEG sensors, 
the EEG signals were highly correlated. Thus, the first treat-
ment in order to guarantee the best source separation was the 
whitening of the EEG dataset. We have chosen to use the 
zero-phase component analysis (ZCA) whitening (Bell and 
Sejnowski 1997) with the aim to be as close as possible (in 
the least squares sense) to the original observations (Kessy 
et al. 2018).

BSS Method Choice

We have chosen to use and compare three well-known and 
proven BSS methods implemented in many user-friendly 
software like EEGLAB (Delorme and Makeig 2004): info-
max ICA, extended infomax ICA and JADE. Consider-
ing the estimated sources, the two first methods minimise 
the mutual information of these sources and the third one 
maximizes their non-Gaussianity. Infomax ICA is based on 
the information-maximization approach proposed by Bell 
and Sejnowski (1995) with the stochastic gradient learn-
ing rule of Amari et al. (1995). This method is effective in 
separating sources that have super-Gaussian distributions 
(sharply peaked probability density functions with heavy 
tails). Extended infomax ICA (Lee et al. 1999) constitute an 
extension of the precedent method to the separation of mix-
tures of super-Gaussian and sub-Gaussian sources. It uses a 
learning rule with a nonlinearity that considers the two kinds 
of distribution. JADE—joint approximate diagonalization 
of eigen-matrices (Cardoso and Souloumiac 1993) exploit 
the fourth order cumulants of the source estimates that are 
a measure of non-Gaussianity. JADE seeks an orthogonal 
rotation of the observed mixed vectors to estimate source 
vectors with maximum non-Gaussianity.

Independent Component Selection

Scalp EEG spike is a sharply contoured waveform with a 
duration of 20–70 ms (Fisch 1999) and its probability den-
sity function was different of a Gaussian distribution. Then, 
to select the most relevant ICs representing the brain sources 
and thus likely to contain spikes, we have chosen to use the 
kurtosis value of IC as indicator. Indeed, the kurtosis could 
be used to appreciate the non-Gaussianity of a random vari-
able, thus it is applied to design contrast function in BSS 
(Hyvärinen and Oja 1997) or to detect artefacts in EEG data 

(Delorme et al. 2007). In our case, we supposed that the 
averaged EEG signals were, as much as possible, artefact 
free and we just wanted to detect averaged ISS. Then, we 
assumed that IC containing averaged ISS was super-Gauss-
ian with a significant positive value of the kurtosis (Fig. 2). 
The effect of brain sources could occur on several ICs so, to 
determine the relevant number of ICs to analyse, we have 
considered the low spatial resolution of scalp electrodes (8 
to 25 electrodes for the seven patients) and some prelimi-
nary investigations that led us to select the three ICs with 
maximum kurtosis value, called after in decreasing order of 
kurtosis value, IC1, IC2 and IC3.

ICs Labelling: Electrode Selection

For each of the selected ICs, the associate 2-D scalp map 
projection was obtained using the corresponding column of 
the inverse of the unmixing matrix issued of the BSS pro-
cess. For that column, the weight with the maximum abso-
lute value corresponded to the scalp electrode that was the 
most impacted by the source. This electrode was defined as 
scalp selected electrode for the considered IC and its name 
was used as a label to compare ICs.

IC Waveform Characterisation

The IC waveform was identified as a transient event, with 
one or two main peaks, distinguishable from the background 
activity. The earliest extremum of the IC beyond two stand-
ard deviations was taken as the extremum of the initial peak 
and the position of this extremum was used as a time refer-
ence, in particular to calculate the latency with respect to t0 
(Fig. 3). If there were two extrema (one maximum and one 
minimum), beyond two standard deviations, with a differ-
ence of more than 80 ms between them, they were consid-
ered not to be part of the same event and therefore the one 
with the lowest amplitude was defined as an outlier and the 
one with the higher amplitude was defined as the correct 
peak.

ICs Validation

This last step concerned the validation that brain source con-
tribution, occurring in the vicinity of the triggering SEEG 
contacts, was noticeable on an IC. Four criteria were used to 
allow this validation. First, as brain propagation is assumed 
to be instantaneous, if the latency between the peak position 
and t0 was greater than 19.5 ms, i.e., 10 samples, this latency 
was not validated, and the IC was discarded. We also veri-
fied, in the same way as for IIS selection, that the amplitude 
of the IC at t0 was significantly different from the amplitude 
of the background activity using the Walsh’s test (for details 
see Koessler et al. 2015). Moreover, the morphologies and 
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Fig. 2   Example of kurtosis values and distribution of two ICs obtained for patient 2, network 3. The upper example is near to Gaussian whereas 
the lower is super-Gaussian (sharply peaked probability density functions with heavy tails)

Fig. 3   Example of IC1s with the infomax ICA method, associated 
with the mean value of the selected electrode signal. For viewing, 
normalisation consists of adapting the amplitude of the IC to that of 

the selected electrode signal and the cross indicates the extremum 
used to compute the latency. IC independent component
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the scalp topographies of the IC were validated using visual 
expert analysis.

For easier visualisation of the final results, a bar charts 
representing EEG channels according to the number of 
selections for ICs was used for each ICi (with i = 1,…,3).

Influence of Methodological and Physiological 
Parameters

Influence of the BSS Method

First, we investigated if the choice of the BSS method had 
an influence on the quality of results, expressed as the vali-
dation percentage of ICs for all trials of the nine networks. 
Thus, the mean percentages obtained with the three methods 
were compared with each other, for each of the three ICs 
of unsorted datasets (nine tests with a sample size equal 
to the number of networks). The H0 hypothesis was that 
the medians of samples were equal and H1 hypothesis that 
they were not. So, we used a two-tailed Wilcoxon rank sum 
test with adequate Bonferroni correction (significance level 
p = 0.05/9).

Relevance of the ICs Rank

We also investigated the influence of the kurtosis rank (1st, 
2nd or 3rd) on the quality of results. So, we compared the 
mean validation percentages of IC1 with that of IC2 and 
IC3, for the three BSS methods and for unsorted datasets 
(two comparisons with three methods i.e., six tests). The 
H1 hypothesis was that the median of the IC1 was greater 
than the median of ICi (i = 2, 3) and the H0 hypothesis was 
that the median of the IC1 was not greater than the median 
of ICi. A one-tailed Wilcoxon rank sum test with adequate 
Bonferroni correction (p = 0.05/3) was used.

Influence of the Number of EEG Electrodes

Another point to investigate was the influence of the num-
ber of scalp EEG electrodes on the validation percentage of 
ICs. For each ICi (i = 1…3), let be the dimension vector of 
the mean percentage of validated ICi for the three methods 
together and the corresponding vector of electrodes number, 
to appreciate the correlation between these two variables, 
we computed the Pearson correlation coefficient calculated 
on the ranks of these vectors (3 methods with 9 networks 
i.e., a vector dimension of 27). For some networks with the 
same or almost the same number of electrodes, additional 
approach was to evaluate the dispersion of the validation 
percentage of each BSS method, reflected by the correspond-
ing standard deviation.

Influence of the Deep Source Strength

The effect of the amplitude of the deep source was evalu-
ated by comparing, for the three BSS methods and the nine 
networks together, the total number of validated ICs of 
sorted and unsorted data for the five first datasets obtained 
by increasing the number of EEG segments in 10-segment 
increments. The H1 hypothesis was that the median of the 
number of validated ICs for sorted data was greater than the 
median of the number of validated ICs for unsorted data and 
the H0 hypothesis was that the median for sorted data was 
not greater than the median for unsorted data. The compari-
son between the obtained 5-item samples was realised with 
a one-tailed Wilcoxon rank sum test. As additional informa-
tion, the mean values of triggering SEEG signal for the first 
trial and the fifth trial were also collected, for both sorted 
and unsorted data.

Evolution of the Validation Percentage of ICs According 
to the Number of Averaged EEG Segments

Furthermore, we evaluated, for all trials and for the three 
BSS methods, the minimum number of EEG segments from 
which the different ICs can be validated. Next, we analysed 
the graphs of the evolution of the validation percentage of 
ICs according to the number of segments to find out if there 
were some specific patterns. Finally, we identified the cases 
of simultaneous validation of two or three ICs for the same 
trial.

Causes of Non‑validation of ICs and Associated Indicators

We tried to identify and quantify the different causes of non-
validation of the first three ICs using relevant indicators. 
These causes could be: (i) the presence of an artefact on 
EEG signals that induces an abnormal pattern on ICs that 
was mistaken for a spike, inaccurate estimation of the t0 for 
some segments, time difference between the deep source and 
the corresponding SEEG triggering signal which increases 
latency with respect to t0, (ii) noise level too high to detect 
the correct peak at t0, (iii) presence of a second deep source 
or artefact that leads to an incorrect cartography. An exces-
sive latency value may indicate the presence of one of the 
first set of causes or a high level of noise. If the latency was 
correct, non-detection using the Walsh’s test may indicate 
a slight peak shift due to inaccurate estimation of t0 or time 
difference between the deep source and the triggering signal 
and, at last, if the peak amplitude was validated, an incorrect 
cartography could suggest the presence of another source 
or artefact. Then, we listed, for all the non-validation, the 
latency, the result of amplitude Walsh’s test and of cartog-
raphy validation to build a table showing the percentage of 
non-detection of ICs according to the value of these three 
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indicators. In this table, the latency evaluation was split up 
into four cases: latency greater than 250 ms, latency between 
250 and 100 ms, latency between 100 and 50 ms and latency 
between 50 and 20 ms.

Results

Patient Networks Characterisation

For all seven patients, nine M networks were validated 
(Table 1). These networks included sources localized in the 
anterior hippocampus, six included sources localized in the 
middle and/or posterior hippocampus, seven in the amyg-
dala, and five in the para-hippocampal gyrus (Koessler et al. 
2015). For these networks, a total of 1949 IIS was selected. 
The mean IIS amplitude was 729 ± 279 µV.

According to this dataset, the corresponding number of 
trials was equal to 195 for the nine networks with a mean 
number of trials per network equal to 21.7 (min: 5, max: 44).

Mean SNR of un-averaged scalp EEG signals 
were − 4.8, − 2.9, − 0.7, 0.5, − 1.0, − 4.9, − 3.5, − 2.2 and 
0.8 dB for IIS networks 1 to 9.

Original data of this study, including anatomical localiza-
tions of the SEEG electrodes and the SEEG signals of all 
IIS networks are available at Mendeley Data at: https://​data.​
mende​ley.​com/​datas​ets/​8wz3w​vm9y5/2.

Overview of the Results for All Trials Together

For all nine networks (195 trials) and the three BSS methods 
together, that is for a total of 585 results, the percentages 

of validated IC1, IC2 and IC3 were 53%, 8% and 3% for 
unsorted data respectively.

For all nine networks, the sums of overall mean percent-
age of all validated ICs (i.e., IC1 + IC2 + IC3) for infomax 
ICA, extended infomax ICA and JADE methods were 61%, 
53% and 62% respectively. The grand mean percentages 
of validated IC1, IC2 and IC3 for the three BSS methods 
together were 49 ± 35%, 7 ± 6% and 3 ± 4% for unsorted data 
respectively. More specifically, for infomax ICA method, the 
overall mean percentages of validated IC1, IC2 and IC3 were 
49 ± 34%, 7 ± 10% and 5 ± 8% respectively; for extended 
infomax ICA these numbers were 46 ± 38%, 6 ± 3% and 
2 ± 2% and for JADE method they were 52 ± 34%, 8 ± 10% 
and 3 ± 4% (Table 2; Fig. 4).

At last, for all nine networks and the three BSS methods 
(27 results), the total percentage of cases without any vali-
dated IC for IC1, IC2 and IC3 were 26%, 33% and 63% for 
unsorted data respectively.

Considering now each network separately, for the 3 ICs 
with the 3 BSS methods and for unsorted data (9 combina-
tions), there is only 1 network (i.e., #9) without any validated 
IC. For the other networks, the percentage of results without 
validated IC varied from 11 to 55% (Table 2).

The analysis of the bar charts representing EEG channels 
according to the number of selections for ICs showed that, 
for IC1, the patterns were different between networks with 
high and low validation percentage for ICs (Fig. 5). Thus, for 
bar charts with high validation percentage, the selected elec-
trode was often the same, inducing a large bar for this elec-
trode and few smaller ones for the other electrodes (Fig. 5a, 
networks 1 to 5 and 7) whereas, for low validation percent-
age bar charts, the range of bar amplitudes was lower and, 

Table 1   Epileptonic zone definition and anatomical distribution of the interictal spikes for each mesial spike network for all patients

“×” Indicates the presence of epileptic spikes with SNR ≥ 2 and bold circles indicate for the spikes serving as triggers for averaging
Int. internal, Amy amygdala, MTG middle temporal gyrus, Hipp hippocampus, Parahipp para-hippocampal, T temporal, basal temporal corre-
sponded to fusiform gyrus or inferior temporal gyrus, L left, R right, Ant. anterior, Int. internal, Mid. middle, Lat. lateral

Patients Epileptogenic 
zone defined 
by SEEG

Laterality IIS networks Numbers of 
IIS

Int. Amy–
MTG

Int. Ant. 
Hipp–int. ant. 
MTG

Int. Post. 
Hipp–int. 
post. MTG

Int. Para-
hipp–int. 
basal T

Int. Mid. 
Hipp–int. 
basal T

P1 Mesial R + L 1 272  ×  0  × 
2 149  ×   ×  0

P2 Mesial, pole R 3 440  ×   ×   ×  0
P3 Mesial L 4 171  ×  0  ×   × 

5 94  ×   ×  0  × 
P4 Mesial L 6 159  ×   ×  0  × 
P5 Mesial, pole L 7 368  ×   ×   ×  0
P6 Mesial, ant. 

and mid. 
basal part

L 8 248 0

P7 Mesial, pole, 
insula

R 9 48  ×  0  × 

https://data.mendeley.com/datasets/8wz3wvm9y5/2
https://data.mendeley.com/datasets/8wz3wvm9y5/2
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often, the number of bars was higher (Fig. 5a, networks 6, 8 
and 9). On the contrary, for IC2, there was no clear pattern 
to differentiate between bar charts (Fig. 5b), as well as IC3.

Influence of Methodological and Physiological 
Parameters

Influence of the BSS Method

The mean p-value for the nine comparison tests between 
the BSS methods was equal to 0.83 ± 0.20 with a minimum 
p-value equal to 0.44. Consequently, H0 hypothesis (equal-
ity of medians) could not be rejected for these nine tests. 
Consequently, there is no significant influence of the BSS 
method for the extraction of deep mesial sources.

Relevance of the ICs Rank

For infomax ICA, extended infomax ICA and JADE meth-
ods, the p-values for the comparison tests between the mean 
validation percentages of IC1 and IC2 were 0.0067, 0.0986, 
0.0126 respectively. In the same way, the p-values for the 
comparison tests between the mean validation percentages 
of IC1 and IC3 were 0.003, 0.026, 0.005 respectively. Con-
sequently, H1 hypothesis (median of IC1 > median of ICi 
for i = 2, 3) could be accepted for infomax ICA and JADE 
methods.

Influence of the Number of EEG Electrodes

For IC1, IC2 and IC3, the Pearson correlation coefficients 
between the vector of mean percentage of validated IC for 
the three methods and the corresponding vector of electrodes 
number, were − 0.36, 0.05 and − 0.04 respectively. For all 
these coefficients, the corresponding p-value was greater 
than 0.05 indicating that the H0 hypothesis (correlation is 
zero) could not be rejected. Networks 4 to 8 had a number 
of electrodes between 12 and 14 with 9 common electrodes, 
so we computed the corresponding standard deviation of 
the validation percentage of each BSS method. For info-
max ICA, extended infomax ICA and JADE methods and 
for IC1, the standard deviations were 29%, 34% and 30% 
respectively; for IC2, standard deviations were 11%, 3% and 
13% respectively and for IC3, 8%, 3% and 6% respectively. 
Figure 6 shows the validation percentage values obtained for 
the JADE method alone.

Influence of the Deep Source Strength

For trials one to five, the number of validated ICs was 10, 
13, 13, 15 and 15 (total = 66) for sorted data respectively and 
1, 6, 7, 10 and 13 (total = 37) for unsorted data respectively. 
For these five first datasets, the p-value of the comparison Ta
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test between the number of validated ICs for both sorted 
and unsorted data was 0.03. Consequently, H1 hypothesis 
(median of validated ICs for sorted data > median of vali-
dated ICs for unsorted data) could be accepted. As an illus-
tration, Fig. 7, networks 2 to 6, showed that, for the five first 
trials, the validation percentage of ICs was better for sorted 
data than for unsorted data. Next, for the first trial and for 
sorted data, five networks had one validated IC for at least 
one method and, for these networks (2, 3, 4, 5 and 9), the 
means of the triggering SEEG signal were 698 µV, 2,022 µV, 
1,574 µV, 920 µV, and 757 µV respectively. For the first 
trial and for unsorted data, the network 2 had one validated 
IC and, for this network, the mean of the triggering SEEG 
signal was 359 µV. At last, for the fifth trial, the mean of 
the triggering SEEG signals for all networks were 1085 and 
652 µV for sorted and unsorted data respectively.

Evolution of the Validation Percentage of ICs according 
to the Number of Averaged EEG Segments

The mean values of the minimum number of segments when 
IC1, IC2 and IC3 were validated for the first time were 
70 ± 77, 71 ± 63 and 67 ± 50 for sorted data respectively and 
62 ± 41, 80 ± 56 and 129 ± 58 for unsorted data respectively. 
The evolution curves of the validation percentage of ICs as 
a function of the number of EEG segments can be classi-
fied into four main categories: (1) curves for which, after 
a minimum number of segments, the validation percentage 
increases almost all the time, (2) curves with alternating 
increases and decreases, (3) curves with one-time increase, 
(4) curves with a validation percentage always equal to zero 
(Fig. 7). The first category concerned exclusively some 
IC1s and indicated that, for the corresponding networks, the 
deep brain source was detectable in almost all cases after 
a minimum number of segments (Fig. 7, networks 1 to 4 
and 7). The second category involved IC1s and IC2s whose 

evolutions appeared to be coupled (one IC increases and 
the other decreases) as if the brain source contribution was 
identified by one IC and then by another (“switching effect”) 
(Fig. 7a, network 5 and Fig. 7b, network 6). Notice that this 
change can also be observed at the beginning of some curves 
of the previous category (Fig. 7, networks 1 and 3). The 
third category concerned IC2s (Fig. 7, network 4, Fig. 7b, 
networks 1, 2 and 7), mainly IC3s (Fig. 7, networks 3 and 8, 
Fig. 7a, networks 4 and 6) and rarely IC1 (Fig. 7a, network 
8). The last category concerned IC1 (Fig. 7, network 9), IC2 
(Fig. 7, networks 2 and 9, Fig. 7b, networks 5 and 8) and 
mainly IC3 (Fig. 7, networks 2, 5, 7 and 9, Fig. 7a, network 
1, Fig. 7b, network 4).

For the total number of trials [1170 i.e., 195 trials with 3 
BSS methods and 2 datasets (sorted and unsorted)] obtained 
for the three BSS methods and both sorted and unsorted 
data, the percentage of trials with two ICs validated at the 
same time was 1.5%. These trials concerned networks 1, 2, 
4 and 8 with concordant selected electrodes. Note that this 
result was consistent with the “switching effect” described 
above.

Causes of Non‑validation of ICs and Associated Indicators

For the three ICs with the three BSS methods and unsorted 
data, the percentages of non-validation associated to Walsh’s 
test and cartography validation were very stable with mean 
about 7 ± 2% and 5 ± 2% respectively. By contrast, the per-
centages of non-validation associated to the four categories 
of latency defined above were increasing for IC2 (77%) and 
IC3 (87%) comparing with IC1 (42%) (Table 3). For IC1 
specifically, the cases of incorrect latency were different 
according to the networks. Thus, for networks 1 to 4, the 
mean of incorrect latencies was equal to 15%; they were 
mostly higher than 250 ms and appeared when the number 
of averaged EEG segments was low, suggesting that source 

Fig. 4   Mean validation percent-
age of ICs and their sum for all 
nine networks and all patients. 
The ICi (i = 1–3) correspond 
to the three ICs with maxi-
mum kurtosis value sorted by 
decreasing order of kurtosis 
value
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separation was not yet conclusive, or punctually at any time, 
due to EEG artefact. Next, for networks 5 and 7, the mean 
of incorrect latencies was equal to 37%; they were mainly 
associated with a low number of averaged EEG segments 
and all categories of latencies were concerned even if these 
latencies were often comprised between 20 and 50 ms as if 
the IC waveform was trying to synchronize to t0 without suc-
cess. Lastly, for networks 6, 8 and 9, the mean of incorrect 
latencies was equal to 82% and all the categories of incorrect 
latencies were concerned.

Improvement of the Extraction: BSS Analysis 
with Expert Control

According to the causes of non-validation, two improve-
ments could be suggested to ameliorate the validation 
percentage of ICs. First, the use of a minimum number of 
average EEG segments, greater than the minimum observed 
mean values (e.g., 100 segments), could improve the extrac-
tion of the ICs. Second, when the peak latency of the IC1 
was too long (e.g., greater than 250 ms in absolute value), 

it clearly indicates the presence of some artefacts or noise 
in the scalp EEG signals. So, replacing this IC1 by the cor-
responding IC2 and this IC2 by the corresponding IC3 could 
also improve the extraction. Consequently, the IC3 data 
were incomplete and IC3 could no longer be used for vari-
ous comparisons. This situation would not be an important 
problem because, in this study, its validation percentage was 
very low. For all initial trials with the three methods, when 
this solution was applied, the substitution involved 79 IC1 
(14%) and the proportion of these IC1 that were replaced by 
an IC2 with a correct latency was 41%.

With these two improvements under visual expertise, two 
networks with insufficient number of segments (networks 5 
and 9) were discarded. The total number of trials was then 
equal to 118. For all seven networks, the mean percentage 
of validated IC1 and IC2 for the three methods together 
were 70 ± 35% and 8 ± 6% for unsorted data respectively. 
More specifically, the overall mean percentage of validated 
IC1 and IC2 were 69 ± 34% and 14 ± 18% respectively for 
infomax ICA method, 60 ± 45% and 6 ± 8% respectively for 
extended infomax ICA and 80 ± 36% and 4 ± 5% respec-
tively for JADE. Then, the sums of overall mean percentage 
of validated ICs for infomax ICA, extended infomax ICA 
and JADE methods were 83%, 66% and 84% respectively 
(Fig. 8).

BSS analysis under visual expertise resulted in validated 
IC1 associated with a relevant selected electrode for all net-
works with all methods (7 networks × 3 methods: 21 cases), 
except for network 6 (validation percentage equal to zero 
for extended infomax ICA), network 7 (validation percent-
age equal to 46% for extended infomax ICA) and network 8 
(validation percentage equal to zero for all methods) (Figs. 9, 
10).

As before, the six comparison tests of BSS methods 
(three methods compared with each other, for two IC and for 
unsorted data) applied to the results of these improvements 
concluded that H0 hypothesis (equality of medians) could 
not be rejected and thus the BSS methods remained equiva-
lent (mean p-value equal to 0.57 ± 0.26 with a minimum 
value equal to 0.318). Conversely, the three comparison tests 
between mean validation percentage of IC1 and IC2 con-
cluded that H1 hypothesis (median of IC1 > median of IC2) 
could be accepted for the infomax ICA and JADE meth-
ods (for infomax ICA, extended infomax ICA and JADE 
methods, the p-values were 0.006, 0.029, 0.004 respec-
tively). Next, for the correlation between mean percentage 
of validated IC and electrodes number, the H0 hypothesis 
(correlation is zero) could not be rejected (for IC1 and IC2, 
the p-value was greater than 0.05 and the Pearson correla-
tion coefficient was respectively equal to − 0.13 and 0.16). 
Lastly, for networks 4 and 6 to 8 with a number of electrodes 
between 12 and 14, the standard deviations of the valida-
tion percentage for infomax ICA, extended infomax ICA 

Fig. 5   Classification, for the JADE method with all trials and the 
unsorted data, of EEG channels according to the number of selections 
for ICs. a IC1. b IC2. The black bar and the grey bar correspond to 
validated and non-validated ICs respectively. P patient, N network

◂

Fig. 6   Validation percentage of ICs, for the nine networks, according 
to the number of surface electrodes using the JADE method with all 
unsorted trials
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and JADE methods, were 41%, 42% and 48% for IC1 respec-
tively and 16%, 8% and 4% for IC2 respectively.

Discussion

Influence of the BSS Method

The three methods used in this paper, and implemented 
in EEGLAB, belong to two categories depending on the 
adopted criteria: infomax ICA and extended infomax ICA 
use an information maximization approach using entropy 
and JADE maximizes the non-Gaussianity of the estimated 
sources by exploiting fourth order cumulants. Although 
these methods are different in their principles, their aim 
is to estimate components which are independent (the less 
Gaussian as possible), i.e., ICs that differ to the Gaussian 
background noise. In our case, this difference of catego-
ries did not change the performance of brain source extrac-
tion. Indeed, for the pairwise comparison tests of the BSS 
methods, the H0 hypothesis (equality of medians) was not 
rejected. Moreover, particularly high p-values and the visual 
analysis of the validation percentage of ICs according to 
the number of segments did not show a clear advantage of 
one method over the others. Hence, we concluded that, with 
our datasets, the BSS methods were equivalent in terms of 
performance.

ICs Selection

In this study, we choose to select and analyse the three ICs 
with maximum kurtosis value. The mean validation per-
centage of ICs, for all networks and all patients, suggested 
that the level of validation of the ICs was consistent with 
their rank (Figs. 4, 8). Moreover, this trend was statically 
validated for IC1, with infomax ICA and JADE methods. It 
appeared that IC1 is a relevant indicator that could be used 
to point out the presence of a mesial source. Indeed, for 
BSS analysis with expert control, the mean percentage of 
validated IC1 was equal to 70% and only one network out of 
seven was never detected whatever the number of trials used.

With a mean validation percentage equal to 8%, the role 
of IC2 appeared more limited. Nevertheless, according to 
the bar charts analysis, IC2 could extract mesial sources that 
were sometimes missed in IC1. This hypothesis is supported 
by the low number of situations where IC1 and IC2 were 
simultaneously validated. At last, IC3 was disregarded for 
analysis and only used to replace some IC2 for BSS analysis 
with expert control.

Fig. 7   Evolution of the validation percentage of ICs according to the 
number of segments for the JADE method. a Sorted data. b Unsorted 
data. The square, the cross and the circle corresponded to IC1, IC2 
and IC3 respectively

◂ Table 3   Mean non-validation percentages of ICs, for the whole set of 
trials and for unsorted sets of EEG recordings, according to latency 
value, Walsh’s test result and cartography validation

Lat. Latency, IC independent component

IC1 IC2 IC3

|Lat.|> 250 ms 17 26 33
250 >|Lat.|> 100 ms 8 23 26
100 >|Lat.|> 50 ms 3 7 13
50 >|Lat.|> 20 ms 14 22 16
Amplitude rejected 4 8 7
Cartography rejected 4 7 3
Total 51 93 97

Fig. 8   BSS analysis with 
expert control: mean validation 
percentage of IC1 and IC2 for 
networks 1 to 4 and 6 to 8 and 
their sum. The IC1 and IC2 
correspond to the two ICs with 
maximum kurtosis value sorted 
by decreasing order of kurtosis 
value
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Compared to MEG, in scalp EEG recordings and espe-
cially in the 10/20 system configuration, the ICs selection 
is performed with low number of sensors. In a MEG-based 
study of Pizzo et al. (2019), authors had to keep only 20 
ICs from 248 magnetometers in order to extract deep mesial 
sources from MEG signals. So, the ICs selection of deep 
mesial sources in MEG is trickier than in scalp EEG. At the 
opposite, MEG presents advantages thanks to very precise 
scalp topographies (high number of sensors) and no ampli-
tude attenuation of magnetic signals from deep sources to 
scalp (no attenuation by the skull).

Influence of the Number of EEG Electrodes

Due to the use of BSS methods, the relationship between 
the number of scalp electrodes and the percentage of vali-
dation was investigated with the assumption that the more 
scalp electrodes are used, the higher performance should 
be. First, the Pearson correlation coefficients between mean 
percentages of validated ICs and electrodes number are low 
and, for all coefficients, the H0 hypothesis (correlation is 
zero) was not rejected. Next, for the networks with almost 
the same number of electrodes, the standard deviation of 
the validation percentage was significantly higher for IC1. 
Consequently, the validation percentage did not appear to 
be correlated with the number of surface electrodes alone. 
Another important aspect could be related to the spatial sam-
pling of the EEG electrodes and more precisely the sam-
pling of the scalp temporal regions i.e., the number and the 
position of scalp electrodes in these regions in our cohort. 
Then, our results could be more related to the specific scalp 
EEG topography from mesial temporal sources contribu-
tion. Indeed, in Koessler et al. (2015), we demonstrated 
using hierarchical clustering of scalp EEG topographies that 
mesial temporal sources had a specific scalp EEG topogra-
phy with an electric field projection in these temporo-basal 
scalp EEG electrodes.

By comparison to other studies that used electromagnetic 
source imaging with a high number of sensors (n > 64), our 
study was limited by the low number of electrodes. This low 
number was due to the surgical constraints (particularly the 
asepsis rules) of the SEEG investigation. The performance 
of deep sources extraction from scalp EEG with few scalp 
electrodes needs to be confirmed with more electrodes in 
a larger cohort. Anyway, the demonstration of deep brain 
sources extraction from scalp EEG also helps to understand 
that source imaging of deep and subcortical source localiza-
tions was plausible and cannot be always considered as false 
localizations.

Influence of the Deep Source Strength

For the first five trials of the initial setting, the fact that the 
median of validated ICs from sorted data were greater than 
those from unsorted data suggested that the contribution of 
the deep source influenced the waveform of the IC and espe-
cially the super-Gaussianity. In other words, if the amplitude 
of the deep source was strong enough, some ICs could be 
validated with the averaging of a few EEG segments. It is 
important to remind that mean SNR of interictal scalp spikes 
from these mesial networks used in this study was − 2.1 dB 
(Koessler et al. 2015) i.e., there was an absence of spikes 
visibility in the un-averaged scalp EEG signals. In this tricky 
situation of low SNR, BSS methods are not completely effi-
cient because they are very dependent to the nature of the 
noise. Using another methodology, Pyrzowski et al. (2021) 
used zero-crossing patterns for extracting low SNR interictal 
discharges from simultaneous scalp and intracranial EEG 
recordings. Their results suggest that scalp zero-crossing 
patterns extract the spatiotemporal structure of subtle scalp 
voltage fluctuations correlated with intracranial interictal 
epileptic discharges. Considering the use of very few depth 
electrodes (majority of subdural electrodes) in the whole 
cohort of this study and that some physiological propaga-
tions, the efficiency of zero-crossing patterns method of 
mesial temporal sources is not completely defined.

Causes of Non‑validation of ICs

In this paragraph, we focus only on IC1 because IC2 and IC3 
less frequently corresponded to deep sources.

The first cause of non-validation of IC1 was an insuffi-
cient number of averaged EEG segments to disentangle the 
sources. The curves analysis of the ICs validation percent-
age as a function of the number of EEG segments revealed 
that the minimum number of required segments was variable 
from patient to patient and no simple and robust method can 
be found to adapt this number to each patient. Nevertheless, 
beyond a minimal number of 70 to 100 segments, IC1 was 
often validated.

A second cause was the presence of artefacts in scalp 
EEG signals that induced peaks on IC waveform. The pre-
processing of the data used in this study removed the most 
significant artefacts, but unfortunately not all. Thus, if 
the corresponding latency of the remaining artefacts was 
sufficiently long (i.e., greater than 250 ms), IC1 could be 
replaced by IC2. The choice of this high latency threshold 
allowed us to be sure that the observed peak was clearly due 
to an artefact. At the opposite, this threshold had no effect 
on artefacts that occurred in short latencies and the resulting 
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improvement did not concern all substitutions (41% with 
our data).

Finally, the other causes could be related to the man-
ual selection of the EEG segments resulting for example 
to (i) unwanted presence of other co-activated brains 
sources, outside the temporal lobe, that induced an 
incorrect cartography, or (ii) inaccurate estimation of 
the t0. Regarding this last point, our blind method could 
operate with a small bias between estimated value of t0 
and the real one if the estimate dispersion was small, 
i.e., corresponding to a peaky IC waveform for the aver-
aged EEG segments.

Despite the use of expert control, network 6 with 
extended infomax ICA, and network 8 with all methods, 
had a validation percentage of IC1 equal to zero. These fail-
ures can be explained by different factors. For network 6 
and for extended infomax ICA method only, the baseline 
of the selected IC1 looked very fluctuating like a variable 
frequency square wave. Consequently, the detection thresh-
old was higher than that of the other two methods and the 

amplitude of the peak of the waveform was lower than the 
threshold, so that the IC was not validated. For network 8, 
the IC waveform associated with relevant EEG electrodes 
comprised two peaks, a first small amplitude peak followed 
by a higher one. The latency of this first peak was mainly 
correct but its amplitude was very often lower than the 
detection threshold so that the second peak, with a latency 
outside the thresholds, was selected and, consequently, the 
corresponding trials were not validated. Then, the remaining 
trials with validated latency were discarded by the Walsh’s 
test because the IC’s amplitude value at t0 was too small 
compared to the background activity.

Decision‑Making and Clinical Perspective

To avoid erroneous decisions, it seemed more convenient to 
analyse the results of several consecutive trials and not just 
one. To do that, the proposed bar chart seemed well-suited 
and, in a blind way, the pattern of the IC1 bar chart could be 

Fig. 9   BSS analysis with expert control: evolution, for the JADE method, of the validation percentage of IC1 and IC2 according to the number 
of segments for unsorted data. The square and the cross correspond to IC1 and IC2 respectively
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used to identify the EEG electrodes activated by the deep 
sources.

In clinical context without simultaneous SEEG 
recordings, and so without the ability to average epi-
leptic spikes, we could use a quite long duration of raw 
scalp EEG recordings to maximize the probability of 
recording deep and very active mesial temporal sources. 
MTL epilepsies are known to have a very active irri-
tative zone with very frequent epileptic discharges in 
the hippocampus, amygdala, entorhinal cortex, parahip-
pocampal gyrus,…,etc. (Bourien et al. 2005; Koessler 
et al. 2015; Karunakaran et al. 2018). Before the analysis 
of long-duration raw scalp EEG recordings, spontaneous 
visible epileptic spikes and artefacts could be removed 
with automatic open-source detection algorithms. This 
step should avoid the detection of ICs from artefactual 
sources or, most importantly, lateral brain sources. From 
our previous study (Koessler et al. 2015), we showed 
that spontaneous visible scalp EEG spikes (i.e., with a 
high SNR) raised from neocortical sources. So, remov-
ing these visible scalp EEG spikes should result in scalp 
EEG signals with both background activity and invisible 
scalp EEG spikes from deep brain sources (i.e., spikes 
with a low SNR like in this study). Then, in a first step, 
the visual analysis of the IC topographies could be used 
to find the scalp topography that could correspond to 
a mesial temporal source contribution i.e., a negative/
positive polarity in the basal temporal electrodes like 
FT10/9 (Koessler et al. 2015). Then, in a second step, 
the kurtosis analysis of short segments of this long-
duration scalp EEG recordings could be used to count 
the number of segments (and so, give a percentage) with 
significant super-Gaussian ICs. The selection of long 
duration scalp EEG recording with a lot of intracerebral 
interictal discharges will not change the SNR of the cor-
responding scalp EEG signal, but it will increase the 
probability to record very high amplitude intracerebral 
epileptic discharges.

Our study has demonstrated that in this situation (e.g., 
the five first segments of sorted data) that extraction is fea-
sible. In a perspective way, despite the unperfect detections 
of mesial temporal sources in this study, our method could 
be used in some clinical routine situations (that need to be 
defined using a large cohort) for alerting medical doctors 
that it exists a probability of mesial temporal source activa-
tion in their raw scalp EEG signals.

Conclusion

Having established the contribution of deep mesial 
temporal sources to scalp EEG (Koessler et al. 2015), 
we demonstrated in this methodological study that the 
extraction of these invisible sources on the scalp is pos-
sible under certain conditions. The first IC extracted 
from the scalp EEG signals was validated in mean from 
46 to 80% according to the different parameters. Despite 
the unperfect detection, this study shows that a relatively 
simple signal analysis of scalp EEG can extract epilep-
tic discharges of brain sources that are hidden/mixed 
with others and so, can escape to visual expert analysis. 
For the clinical diagnosis of epilepsy, this solution that 
relies on non-invasive recordings would be important 
because it can change the medical care, especially in 
drug resistant epilepsy where source detection and local-
ization (e.g., deep and/or lateral) are crucial. Finally, it 
is important to mention that we have deliberately used 
common available toolboxes to test their performances 
and finally found promising results. These offer several 
interesting perspectives for the development of new sig-
nal processing tools and methods that could improve the 
performance of deep source extraction.
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