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A B S T R A C T

A well known problem in EEG recordings deals with the unknown potential of the reference electrode. In
the last years several authors presented comparisons among the most popular solutions, the global conclusion
being that the traditional Average Reference (AR) and the Reference Standardization Technique (REST) are
the best approximations (Nunez, 2010; Kayser and Tenke, 2010; Liu et al., 2015; Chella et al., 2016). In this
work we do not aim to further compare these techniques but to support the fact that both solutions can be
derived from a general inverse problem formalism for reference estimation (Hu et al., 2019; Hu et al., 2018;
Salido-Ruiz et al., 2011). Using the alternative approach of least squares, our findings are consistent with
the theoretical findings in Hu et al. (2019) and Hu et al. (2018) showing that the AR is the minimum norm
solution, while REST is a weighted minimum norm including some approximate propagation model. AR is thus
a particular case of REST, which itself uses a particular formulation of the source estimation inverse problem.
With a different derivation, we provide the additional powerful evidences to reinforce the cited findings.

1. Introduction

The EEG signals measure the potential difference between an elec-
trode, placed somewhere on the head surface, and a reference elec-
trode, placed somewhere else on the body. Ideally, the reference elec-
trode should be placed in the most electrically inactive position and far
from the region of interest. In practice, the reference is contaminated
with unknown local and/or propagated electrical activity. Still, most of
the studies need reference free potentials for better results [4–8]. For
example, functional brain connectivity are estimated using coherence
and phase delays among EEG channels, and the reference potential
might strongly affect these methods1 [8–12]. A previous study showed
that even Blind Source Separation techniques might be affected by the
reference problem [13].

This paper focuses on EEG recorded using a scalp reference. In
this case, the reference electrode captures the same kind of activity
as any other electrode, that is a mixture of brain sources. In this
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1 Although some of these studies were focused on intracranial EEG, the effect of the reference potential is the same. Note though that for iEEG,
the reference estimation techniques are different, as they assume that the reference is sufficiently far from the measuring electrodes to be considered
independent/uncorrelated [1–3].

context, the most popular solution for canceling the reference poten-
tial is to subtract the spatial average of the recorded signals from
all measurements. This solution, known as average reference mon-
tage (AR) was challenged by the Reference Standardization Technique
(REST) [6]. Several authors compared the two solutions (or other re-
referencing techniques) [7,14–19], the overall conclusion being that
REST is deemed to yield better results, although this is not always the
case, especially when the head model is prone to inaccuracies. The goal
of this paper is to theoretically show that both AR and REST belong
to the same family of inverse problems widely encountered in EEG
analysis, i.e., weighted minimum norms. Although the same idea was
recently put forward by [20,21] by matrix differential calculus and
maximum a posterior estimation, our paper proposes an alternative
simple algebraic proof (another algebraic proof can be found also
in [17], in French). To avoid redundancies with the previously cited
papers, we do not present extensive simulation results comparing clas-
sical AR and REST solutions. Instead, we focus on different (REST-like)
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versions of weighted minimum norm solutions, including equivalent
sources distributed in the whole head volume or on dipolar layers at
different positions around the brain. The accuracy of these different
solutions is evaluated with respect of the degree of precision that one
can inject in the inversion model, based on some a priori knowledge.

2. EEG Measurement model

Consider the classical EEG linear model given by:

𝐱 = 𝐀𝐬 (1)

where 𝐱 ∈ R𝑚×1 is a vector with unknown real potentials under
each electrode with respect to infinity, from here defined as absolute
potentials for the 𝑚 electrodes, 𝐀 ∈ R𝑚×𝑝 is the mixing lead-field matrix
and 𝐬 ∈ R𝑝×1 is the source vector. Note that the reference potential
is included among the 𝑚; for convenience, it will be assumed in the
rest of the paper that this potential is the 𝑚th one. In EEG, the matrix
𝐀 represents the head model, obtained either by analytical approxi-
mations (e.g. spherical head models) or numerically, for realistic head
models obtained after MRI segmentation of head structures (brain, CSF,
skull, scalp). The sources vector 𝐬 contains the amplitudes of the dipoles
that model the neural sources [22]. For these realistic models, possible
source emplacements depend on the brain volume discretization but,
regardless of the used head model, the number of sources 𝑝 is far bigger
than the number of electrodes 𝑚 (𝑝 ≫ 𝑚). Eq. (2) introduces the so-
called instantaneous mixture model, with the matrix 𝐀 time-invariant
and of rank 𝑚. For real signals recorded in time having 𝑛 > 𝑚 time
samples, the vectors 𝐱 and 𝐬 become matrices of dimension 𝑚 × 𝑛 and
𝑝 × 𝑛 respectively:

𝐗 = 𝐀𝐒 (2)

Note that we consider during all the paper that the ideal infinity-
referenced data matrix 𝐗 has linearly independent rows, thus it is rank
𝑚. This of course can only be true if the rank of the source matrix 𝐒 is
greater of equal to 𝑚, i.e., if there are at least 𝑚 linearly independent
sources.

The actually measured potentials are given by the common refer-
ence montage (CR), with potentials 𝐗𝐶𝑅 modeled by subtracting the
potential of the chosen reference electrode from the other electrodes.
This can be seen as a matrix transform of the absolute potentials from
(2):

𝐗𝐶𝑅 = 𝐓𝐶𝑅𝐱 = 𝐓𝐶𝑅𝐀𝐗 = 𝐀𝐶𝑅𝐗 (3)

with 𝐓𝐶𝑅 the 𝑚 − 1 rank matrix:

𝐓𝐶𝑅 =
[

𝐈𝑚−1 −𝟏𝑚−1
]

(4)

where 𝐈𝑚−1 is the (𝑚− 1) × (𝑚− 1) identity matrix and 𝟏𝑚−1 ∈ R𝑚−1×1 is
a vector of 1’s. As mentioned above and with no loss of generality, we
assume the reference electrode potential as the last absolute potential
in EEG linear model (2). Note that, unlike 𝐗 in ((2)), the dimension of
𝐗𝐶𝑅 is 𝑚 − 1 × 𝑛 (number of available signals).

The most employed solutions propose to cancel the reference by
transforming the CR into other EEG montages (average reference — AR,
bipolar — BM, Laplacian — LapM) [1,4,14,23,24]. A more elaborated
solution, based on head modeling, is the reference standardization
(REST) [6]. Among these, only AR and REST propose absolute potential
estimations, the BM and the LapM being local estimators (along with
the reference potential, they also cancel propagated activities origi-
nating in far situated regions [25]). We will only focus here on the
former.

2.1. Average reference (AR)

The classical rationale behind average reference montages (AR) is
that, under the hypothesis of equidistributed electrodes covering the
whole head, the sum of all electrode potentials on the scalp should be
zero (see [26] for a proof for the spherical head model).

In practice, as the only available signals are 𝐱𝐶𝑅, AR signals are
obtained by calculating the sum of the 𝑚 − 1 𝐱𝐶𝑅 signals, dividing it
by the total number of electrodes 𝑚 and subtracting it from each mea-
surement [5,27,28]. More formally, the AR is obtained by averaging
over all electrodes (reference electrode included with a null potential
(i.e., its potential with respect to itself):

𝐗𝐴𝑅 =
(

𝐈𝑚 − 1
𝑚
𝟏𝑚𝟏𝑇𝑚

)

[

𝐗𝐶𝑅
0

]

= 𝐓𝐴𝑅𝐗𝐶𝑅 (5)

with

𝐓𝐴𝑅 =

[

𝐈𝑚−1 −
1
𝑚𝟏𝑚−1𝟏

𝑇
𝑚−1

− 1
𝑚𝟏

𝑇
𝑚−1

]

(6)

As we can see, 𝐗𝐴𝑅 has a dimension of 𝑚 × 𝑛 and rank of 𝑚 − 1,
i.e., it preserves the rank of 𝐗𝐶𝑅 (one less than 𝐗). In practice, the
average signal is included as the last row of 𝐗𝐴𝑅, noted for convenience
(𝐱𝑚,𝐴𝑅).2

2.2. Reference electrode standardization technique (REST)

The REST method [6,14] allows to estimate absolute potentials at
any point on the scalp by solving a forward problem with ‘‘equivalent
sources’’ �̃� constrained to a dipolar layer completely surrounding the
actual sources, i.e., the brain. Several versions can be theoretically
proposed, depending on the configuration chosen for the dipolar layer
(e.g., a sphere circumscribing the whole brain, or the numerically
approximated cortical surface). The chosen dipolar layer will yield a
specific forward model between the dipoles situated on this layer and
the actual electrodes placed on the head surface. Let this model be �̃�.
The equivalent dipolar sources on this layer are estimated from scalp
EEG recordings (equivalently in CR or in AR) by using a simple inverse
problem formalism. We give below only the CR based approach:
̂̃𝐒 = �̃�+

𝐶𝑅𝐗𝐶𝑅 (7)

with + designating the classical Moore–Penrose pseudo-inverse. Of
course, �̃�𝐶𝑅 depends on a mixing model (see Eq. (4)), here assumed
�̃�. A forward model using the assumed �̃� and the estimated equivalent
sources ̂̃𝐒 yields the REST estimations of the EEG absolute potentials:

𝐗𝑅𝐸𝑆𝑇 = �̃�̂̃𝐬 = �̃��̃�+
𝐶𝑅𝐗𝐶𝑅 = 𝐓𝑅𝐸𝑆𝑇𝐗𝐶𝑅 (8)

It is important to recall that different REST solutions can be obtained
by choosing different dipolar layer configurations and thus different �̃�
models.

3. Unified inverse problem modeling

As seen above, two main solutions exist for estimating the abso-
lute potentials: average montage and REST. Three relatively recent
comparative studies [7,16,18] conclude that both solutions present
valid theoretical arguments and that both are acceptable. Our aim
is to deepen the analysis, to show the connections between the two
techniques and their integration in a larger inverse problem framework.

2 Note that in [19], the formulation is done differently (i.e., they use a
𝐓𝑅 of dimension 𝑁𝑒 × 𝑁𝑒, 𝑚 = 𝑁𝑒 in our case), but they are equivalent
(i.e., one of the rows of 𝐓𝑅 has only zeros). Our rationale was to start, as in
classical inverse problems, from the actual measurements 𝐗𝐶𝑅 and not from
the absolute potentials. Still, the two formulations yield the same conclusions.
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Consider the case of a EEG recording with a cephalic reference as
given in (Eq. (3)). The estimation of absolute potentials 𝐱 from the
measured 𝐱𝐶𝑅 and matrix transformation 𝐓𝐶𝑅, is an ill-posed inverse
problem somehow similar to the classical EEG source estimation with
a known mixing model 𝐓𝐶𝑅.

Thus, the absolute potentials inverse problem writes as follows:

�̂� = 𝐓𝐗𝐶𝑅 = 𝐓𝐓𝐶𝑅𝐗 (9)

where the unknown matrix 𝐓 ∈ R𝑚×𝑚−1 is a generalized inverse of the
common reference transformation matrix 𝐓𝐶𝑅:

𝐓 = 𝐖−1𝐓𝑇
𝐶𝑅

[

𝐓𝐶𝑅𝐖
−1𝐓𝑇

𝐶𝑅
]−1 (10)

with 𝐖 a weighting matrix allowing infinite solutions. In the next
paragraphs we describe several particular Weighted Minimum Norm
(WMN) solutions.

3.1. WMN optimal solution: Oracle1

The underdetermined system (9) has an infinite number of solu-
tions. In theory, the best inverse transform 𝐓 can be estimated by
minimizing the least-squares error between absolute and measured
potentials. This optimal transform 𝐓𝑂1 can be obtained by multiplying
absolute potentials 𝐱 by the Moore–Penrose pseudo inverse of measured
potentials matrix 𝐗𝐶𝑅:

𝐓𝑂1 = 𝐗𝐗𝑇
𝐶𝑅

[

𝐗𝐶𝑅𝐗
𝑇
𝐶𝑅

]−1 = 𝐀𝚺𝐬𝐀𝑇𝐓𝑇
𝐶𝑅

[

𝐓𝐶𝑅𝐀𝚺𝐬𝐀𝑇𝐓𝑇
𝐶𝑅

]−1 (11)

where 𝐀 the head model and 𝚺𝐒 = 𝐒𝐒𝑇 is the source scatter matrix
(for completeness, the proof in given in the appendix). This optimal
solution is equivalent to (10) for 𝐖−1 = 𝚺𝐗 = 𝐀𝚺𝐒𝐀𝑇 (𝚺𝐗 = 𝐗𝐗𝑇 being
the scatter matrix of the absolute potentials). Of course, it remains
theoretical, because neither the absolute potentials scatter matrix nor,
equivalently, the propagation coefficients between the actual sources 𝐒
and the sensors (depending on the sources positions and orientations
and on the head model) and the source scatter matrix, are known in
practice.3

3.2. WMN sub-optimal solutions: Oracle2 and REST

In practice, 𝚺𝐒 is not known and prior covariance matrices �̃�𝐒 are
difficult to construct. On the other hand, rather accurate head models
can be obtained for 𝐀 for all possible source locations inside the brain
volume.

Ignoring the source amplitudes (or their covariance matrix) but
supposing that we have some a priori knowledge on their positions and
orientations, as well as a good head model (i.e., making 𝚺𝐬 = 𝐈𝑝 but
assuming a known 𝐀), one obtains:

𝐓𝑂2 = 𝐀𝐀𝑇𝐓𝑇
𝐶𝑅

[

𝐓𝐶𝑅𝐀𝐀
𝑇𝐓𝑇

𝐶𝑅
]−1

= 𝐀
[

𝐓𝐶𝑅𝐀
]+ = 𝐀𝐀+

𝐶𝑅 (12)

A step further towards more realistic situations is to ignore the source
positions and orientations, but to still assume a complete head model,
i.e., a mixing matrix 𝐀𝐶 corresponding to a complete lead-field matrix
for all possible source configurations (of course, in practice it will be
computed for a grid of points inside the brain volume). The equations
are exactly the same as (12), with a complete mixing matrix 𝐀𝐶 re-
placing 𝐀 (which is an incomplete lead-field matrix, in the sense that it
accounts only for the a priori known source positions and orientations).
Finally, as pointed out in [6], distributing equivalent sources on a

3 Note that, if some a priori knowledge on the spatial covariance of the
sources are available, the source scatter matrix can be replaced by the
hypothesized covariance matrix �̃�𝐒. The minimum norm solution will then be
equivalent to the maximum likelihood estimation under a Gaussian hypothesis
on the spatial source distribution 𝑝(𝐒) =  (𝟎, �̃�𝐒).

layer surrounding the actual brain sources, theoretically yields another
mixing model 𝐀𝑅 used in the REST solution.

If Oracle1 and Oracle2 cannot be used in practice (because they are
based on unknown information on the actual sources), it is noteworthy
that REST-like solutions (either based on a complete volume model or
an equivalent layer) could be in principle used, because they only need
a propagation model between some chosen sources and the surface elec-
trodes, and these models can be estimated with more or less accuracy
from imaging techniques and physical considerations (see e.g. [29] for
a review of the forward problem in EEG)).

Finally, it is easy to see that all these weighted minimum norm
solutions share the same equation (12), which enlightens the fact that
any full-rank matrix �̃� can be used to construct a generalized inverse
of 𝐓𝐶𝑅. Indeed,

𝐓𝐶𝑅�̃��̃�𝑇𝐓𝑇
𝐶𝑅

[

𝐓𝐶𝑅�̃��̃�𝑇𝐓𝑇
𝐶𝑅

]−1 = 𝐈𝑚−1

regardless of the accuracy of the model �̃�. In this sense, a completely
false or random model �̃� will yield false estimates of the absolute
potentials �̃�, but they will still verify the measured common reference
signals 𝐗𝐶𝑅 = 𝐓𝐶𝑅�̃�.

3.3. Minimum norm solution, MN

Within this context, the most evident solution of (10), without any
a priori information about the mixture or the sources (i.e., neither on
𝐀 nor on the source covariance), is the Minimum Norm Solution (MN)
obtained when 𝐖 = 𝐈𝑚. Then, an estimation of absolute potentials is
given by:

�̂� = 𝐓𝑇
𝐶𝑅

(

𝐓𝐶𝑅𝐓
𝑇
𝐶𝑅

)−1 𝐱𝐶𝑅

= 𝐓+
𝐶𝑅𝐱𝐶𝑅 (13)

with 𝐓+
𝐶𝑅 the Moore–Penrose pseudo-inverse of the common reference

transformation matrix 𝐓𝐶𝑅.

Proposition. The minimum norm solution to the inverse reference problem
is the AR solution from (6):

𝐓+
𝐶𝑅 = 𝐓𝐴𝑅

Proof. By Sherman–Morrison formula and using the definition of the
Moore–Penrose pseudo-inverse and the expression of 𝐓𝐶𝑅 (4), one can
write:

𝐓+
𝐶𝑅 = 𝐓𝑇

𝐶𝑅(𝐓𝐶𝑅𝐓𝑇
𝐶𝑅)

−1

=
[

𝐈𝑚−1
−𝟏𝑇𝑚−1

](

[

𝐈𝑚−1 − 𝟏𝑚−1
]

[

𝐈𝑚−1
−𝟏𝑇𝑚−1

])−1

=
[

𝐈𝑚−1
−𝟏𝑇𝑚−1

]

[

𝐈𝑚−1 + 𝟏𝑚−1𝟏𝑇𝑚−1
]−1

=
[

𝐈𝑚−1
−𝟏𝑇𝑚−1

]

(

𝐈𝑚−1 − 𝟏𝑚−1
𝟏𝑇𝑚−1

1 + 𝟏𝑇𝑚−1𝟏𝑚−1

)

=
[

𝐈𝑚−1
−𝟏𝑇𝑚−1

]

(

𝐈𝑚−1 − 𝟏𝑚−1
1
𝑚
𝟏𝑇𝑚−1

)

= 𝐓𝐴𝑅 (14)

In the first row, we use block-matrix multiplication, while in the
second we use the Sherman–Morrison formula (or more generally the
Woodbury identity), see for example [30]). Readers interested by a
second algebraic proof are directed to [17].

Note that the AR montage obtained by pseudo-inverting 𝐓𝐶𝑅 can
be seen as another particular case of REST, obtained for a dipolar
layer having the head geometry and situated infinitely close below the
electrodes (closely mimicking an �̃� = 𝐈𝑚).
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4. Results

The aim of this section is to briefly present numerical results, both
on simulated and real data, supporting the previous analysis.

4.1. Simulation

The simulations presented here illustrate the fact that the accuracy
of different estimations of the absolute potentials, obtained using the
previously described approaches. These estimated potentials are com-
pared with simulated ground truth potentials, computed as follows: a
three shell mesh model (Colin 27) was extracted from Brainstorm [31]
toolbox in order to have a realistic geometry. The cortical layer mesh
(inner shell) had 642 nodes with 13 mm mean distance between
neighboring points, while the scalp mesh (outer shell) had 1922 nodes.

A regularly spaced grid was constructed inside the inner shell
(brain), with a 13 mm distance between neighboring points, which
yielded 1774 points. Several source configurations were tested, namely
using 𝑝 = {128, 256, 512, 1024} dipolar brain sources randomly chosen
among the inner shell grid points. The orientations were random, and
the time courses were simulated as spatially and temporally correlated
Gaussians of length 𝑁𝑠 =

(

𝑚
8 + 1

)

×𝑓𝑠 seconds (rule derived from [32]),
𝑓𝑠 being sampling frequency and 𝑚 the number of scalp electrodes.
Three sensor setups were tested using 𝑚 = {64, 128, 256} scalp elec-
trodes placed on the head surface (outer shell) according to the 10–10
system, one of them being the reference electrode. Sensor coordinates
were also extracted from the Brainstorm toolbox and snapped to the
mesh vertices by nearest-neighbor rule. The absolute EEG scalp poten-
tials were simulated by projecting the sources of interest to the sensors
using the BEM model implemented in the Helsinki toolbox [33], with
conductivity ratios of 40:1 between the brain and the skull and 1:1
between brain and scalp. Simulated absolute potentials 𝐗 were trans-
formed into measured potentials 𝐗𝐶𝑅 by (3). One hundred simulations
were performed for every configuration (position, orientations and time
courses of the dipoles).

In order to evaluate the influence of the model accuracy on the
results, we implemented different weighted inverse solutions, from the
fully specified Oracle (11) to the model-free average reference (5),
passing through REST and volume REST𝑣 (12). For REST𝑣, the lead-
field 𝐀𝐶 was computed for the complete grid of 1774 volume points
inside the brain shell and all three orientations (𝑚 × 5322). For REST,
the lead-field 𝐀 was computed for the cortical layer of 642 points and
for dipoles orthogonal to the scalp (𝑚 × 642). For completeness, we
also implemented a REST-like solution, in which we used a random
𝐀 mixing model (𝑚 × 642, generated as a spatially correlated uniform
random variables), with no physical significance. We re-emphasize here
that all models (including the random one) perfectly explain the CR
measurements.

The evaluation criterion was the relative error introduced in [6]:

𝑅𝐸 = ‖𝐗 − �̂�‖∕‖𝐗‖ (15)

where 𝐗 contains the absolute potentials, �̂� are the estimates and ‖ ⋅ ‖
is the Frobenius norm.

The simulation results (Table 1) confirm the hypothesis that the
accuracy of the estimated zero-referenced potentials is proportional to
the amount of additional correct information injected in the solution.
In principle, one should use as complete models as possible.4

If we put aside the Oracles, very accurate but impossible to use in
practice, the complete full-volume REST𝑣 model generally outperforms
the cortical REST, at least for the same spatial density of the lead-field
matrix (not shown here, a denser cortical layer REST also improves
the estimations). When comparing classical REST and AR estimates, the

4 Note that Oracle solutions cannot function if the number of sources is
below the number of sensors because of the matrix inversion in (11) and (12).

Table 1
Simulation results (Relative Error (15)) for different numbers of active brain sources
and sensors configurations. The results (mean and standard deviations) are obtained on
100 simulations with random positioned sources of random amplitudes and orientations.

RE𝑜 RE𝑜2 RE𝑅𝐸𝑆𝑇𝑣 RE𝑅𝐸𝑆𝑇 RE𝐴𝑅 RE𝑟𝑎𝑛𝑑

64 sensors

100 Mean 0.04 0.06 0.17 0.22 0.24 20.39
sources (std) (0.01) (0.02) (0.04) (0.12) (0.04) (6.49)

250 Mean 0.08 0.10 0.17 0.26 0.25 20.73
sources (std) (0.02) (0.03) (0.03) (0.14) (0.04) (7.55)

500 Mean 0.10 0.11 0.16 0.32 0.26 20.92
sources (std) (0.02) (0.02) (0.03) (0.14) (0.03) (5.92)

1000 Mean 0.12 0.13 0.16 0.34 0.26 20.83
sources (std) (0.02) (0.02) (0.02) (0.11) (0.03) (7.56)

128 sensors

100 Mean – – 0.16 0.22 0.32 4.29
sources (std) – – (0.04) (0.13) (0.04) (1.38)

250 Mean 0.06 0.09 0.17 0.25 0.31 4.42
sources (std) (0.01) (0.02) (0.04) (0.12) (0.03) (1.26)

500 Mean 0.10 0.12 0.16 0.28 0.31 4.29
sources (std) (0.02) (0.02) (0.03) (0.11) (0.02) (1.24)

1000 Mean 0.12 0.14 0.16 0.31 0.31 4.45
sources (std) (0.02) (0.02) (0.02) (0.10) (0.02) (1.21)

256 sensors

100 Mean – – 0.15 0.22 0.31 3.75
sources (std) – – (0.04) (0.11) (0.04) (1.36)

250 Mean – – 0.15 0.23 0.30 3.60
sources (std) – – (0.03) (0.10) (0.03) (1.09)

500 Mean 0.05 0.08 0.14 0.27 0.30 3.76
sources (std) (0.01) (0.02) (0.03) (0.10) (0.02) (1.16)

1000 Mean 0.08 0.10 0.14 0.31 0.30 3.90
sources (std) (0.01) (0.02) (0.02) (0.09) (0.02) (1.23)

former are in average more performant. Still, this is not the case for low
density montages and high number of sources, i.e., when the number
of active sources is much higher than the number of sensors. More
precisely, REST performances are stable with respect to the number
of sensors, but they slightly degrade when the number of sources
increases, while the AR estimates remain mostly unaffected by the
number of active brain sources (although they seem to be better for the
64 sensors montage than for higher density ones). Interestingly, REST
performances have a higher variance than AR based ones, regardless of
the configuration. Finally, completely wrong models (random 𝐀) yield
the worst solutions, far below the average reference AR.

Fig. 1 graphically presents simulation results for a head model with
512 dipolar brain sources and 64, 128 and 256 electrodes (the random
configuration is not presented).

4.2. Real signals

According to our previous argumentation, REST and AR solutions
should converge to the same solution when the dipolar layer used for
REST approaches the head surface and thus the sensors. We have evalu-
ated their relationship using real data, without any previous knowledge
on the sources. The EEG signals (resting state) were recorded in the
epilepsy unit of the University Hospital of Nancy during routine clinical
evaluation of an epileptic patient. Patient gave his/her informed con-
sent for this study. This patient (25 year-old woman) had a normal MRI
(i.e. without visible MR lesion) and insulo-opercular epilepsy. Seventy-
six electrodes were placed according to the 10–10 system [34], the
reference electrode being chosen, for clinical reasons at FPz. The head
model (scalp, outer skull, inner skull) were computed from the MRI of
the patient using the BrainStorm pipeline (1922 nodes and 3840 faces
for each surface).
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Fig. 1. Relative errors 𝑅𝐸. The red dots represent mean values over 100 simulations, the standard deviations being given by the vertical whiskers. Only the 500 sources
configurations are shown here (from left to right, 64, 256 and 256 sensors). Complete simulation results are given in Table 1.

Fig. 2. Partial head mesh for the studied epileptic patient. To ease the visualization, only the scalp (in gray) and the inner skull (in red) are represented, along with the dipolar
layer (in blue) used for REST (here at 2 mm, 4 mm, 6 mm and 8 mm depth below the scalp surface). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Table 2
Relative error between the AR and REST estimations, depending on the depth of the
dipolar layer.

Depth 10 mm 8 mm 6 mm 4 mm 2 mm
RE 0.0537 0.0387 0.0211 0.0063 0.0057

Several REST solutions were computed for the absolute potentials,
for dipolar layers placed at different depths (2 mm, 4 mm, 6 mm,
8 mm and 10 mm) with respect to the head surface, but outside the
brain (inner skull) mesh (see Fig. 2). The geometry of the layer was
the same as the one of the scalp, in order to be able to keep a constant
distance between the sensors and the layer, except in the lower part of
the brain, where we considered a flat surface 10 mm outside the inner
skull. The number of dipoles on the layer was constant and the same
as the number of points on the scalp mesh (1922).

We used the same criterion RE for evaluating the difference between
REST and AR montages, REST being considered the ground truth (𝐗
in (15)) and AR the estimate �̂�. The results are given in Table 2, for
different depths of the dipolar layer. As it can be seen, the closer the
dipolar layer to the surface, the smaller the ‘‘distance’’ (the relative
difference, in Frobenius norm) between the AR and REST estimates.
It is useful to note that, for the real signals, as there is no ground truth,
it is impossible to strictly evaluate the performances of the different
solutions. The aim of this section is to highlight the fact that the AR
montage is a limit case of the surface-based REST, when the layer is
close to the head surface. On the other hand, if the layer is too deep

(below the brain surface), it will miss cortical sources and the estimate
of the absolute reference montage (using REST) will be theoretically
false.

5. Discussion

This work presents a unified inverse problem framework for the
reference problem in (sensor noise free) surface EEG, which is an
algebraic alternative to the approach recently proposed by [19–21].
This algebraic least-squares (LS) solution is common when an inverse
problem has no exact solution and it can be extended to the general lin-
ear inverse problem as presented in [35]. The solution to general linear
inverse problems from the point of view of LS is the Moore–Penrose
pseudo-inverse, leading to minimum norm and weighted minimum
norm solutions [36–38]. In the EEG case we are interested in, the ab-
solute potentials estimation by pseudo-inversion is an underdetermined
inverse problem, as the number of absolute potentials to be estimated
is greater than the number of available signals (𝑚 with respect to 𝑚−1
in the notations used in this paper). Consequently, the problem has an
infinite number of solutions, parametrized by the a priori information
that can be injected. The different parametrizations lead to different
so-called Weighted MN solutions, having different accuracies depending
on the quality of the injected a priori information, as we have shown in
the previous section.

Among these solutions, the ideal Oracle involves some priors on
the absolute potentials (or brain sources) covariance. On the other
hand, the other proposed solutions are based only on linear algebra
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(i.e., they are weighted minimum norms with deterministic weight
matrices). In the recent literature, Hu et al. adopt matrix differential
calculus and best linear unbiased estimator to the underdetermined
linear regression problem in [21], and maximum posteriori or penalized
likelihood estimates to the Bayesian linear inverse problem in [20]
which are common in solving the inverse solution in the field of
the electrophysiology source imaging. With a different derivation, the
results we present here are similar to the theoretical findings in [20,21].

Finally, we have to note that even if the developments here were
presented for monopolar reference EEG (which is the most current
recording setup), they can easily be extended to other montages, such
as linked mastoids. Indeed, this situation could be modeled by replacing
the -1 column in the 𝐓𝐶𝑅 (4) by two columns of −0.5 and changing
the dimension of the 𝐈𝑚−1 identity matrix (to 𝐈𝑚−2). The measured
potentials will be modeled by multiplying this 𝐓𝐿𝑀 linked-mastoids
transform with the absolute potentials (including, on the last 2 rows,
the potentials of the two mastoids). The derivation of the pseudo-
inverse of this follows the same steps as above (14), yielding estimates
of the absolute potentials.

6. Conclusions

As mentioned, our aim is not to present new simulation results, for
extensive simulation results and comparisons (including the effects of
model errors, geometry or noise errors), the reader is referred to [7,14–
16,18,39]. The main contribution of the work presented in this paper
is the reformulation of different reference estimation methods. Indeed,
all methods, from the best possible model based Oracle1 to the model-
free average reference, can be seen as ill-posed inverse problems aiming
to estimate absolute potentials from the measurements. In particular,
we have shown that the AR is the minimum-norm solution to this
problem, while the other methods are weighted norms, more or less
accurate depending on the amount and on the precision of the injected
a priori information.
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Appendix

Demonstration of 𝐓𝑂

𝐓𝑂 = 𝐱𝐱𝑇𝐶𝑅
[

𝐱𝐶𝑅𝐱
𝑇
𝐶𝑅

]−1

= 𝐱𝐱𝑇𝐓𝑇
𝐶𝑅

[

𝐓𝐶𝑅𝐱𝐱
𝑇𝐓𝑇

𝐶𝑅
]−1

= 𝚺𝐱𝐓
𝑇
𝐶𝑅

[

𝐓𝐶𝑅𝚺𝐱𝐓
𝑇
𝐶𝑅

]−1

= 𝐀𝐬(𝐀𝐬)𝑇𝐓𝑇
𝐶𝑅

[

𝐓𝐶𝑅𝐀𝐬(𝐀𝐬)
𝑇𝐓𝑇

𝐶𝑅
]−1

= 𝐀𝚺𝐬𝐀
𝑇𝐓𝑇

𝐶𝑅
[

𝐓𝐶𝑅𝐀𝚺𝐬𝐀
𝑇𝐓𝑇

𝐶𝑅
]−1 (16)
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